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ABSTRACT

Narrow regions of intense, banded snowfall present hazardous travel conditions due to rapid onset, high

precipitation rates, and lowered visibility. Despite their importance, there are few verification studies of

snowbands in operational forecast models. The objective of this study is to evaluate the ability of the High-

Resolution Rapid Refresh (HRRR) model to predict snowbands in the United States east of the Rocky

Mountains. An automated band-detection algorithm was applied to a 3-yr period of simulated and ob-

served radar reflectivity to compare snowband climatologies. This algorithm uses the distributions of

reflectivities in contiguous precipitation regions to determine a band intensity threshold. The predictability

of snowbands on a case-by-case basis was also evaluated using an object-oriented approach. The distri-

bution of HRRR forecast banding resembles that of the observations, but with a significant positive fre-

quency bias. This may partially be due to underrepresentation of observed bands in our verification dataset

due to limited radar coverage in portions of the central United States. On a case-by-case basis, traditional

skill metrics indicate limited predictability, but allowing for small timing discrepancies dramatically im-

proves scores. Object-oriented verification yields mixed results, with 30% of forecasts receiving a score

indicative of a well-predicted event. However, 69% of cases have at least one forecast lead demonstrating

skill, suggesting the HRRR is successful in depicting environments conducive to band formation. These

results suggest adopting a probabilistic, ensemble approach, and indicate that the deterministic HRRR is

best suited for the identification of regions of elevated snowband risk and not precise timing or location

information.

1. Introduction

Narrow regions of intense, banded snowfall present

hazardous travel conditions due to rapid onset, high

precipitation rates, and lowered visibility. Though to

the authors’ knowledge there has been no quantification

of the societal or economic impacts associated specifi-

cally with snowbands, annual economic costs of heavy

snow events are estimated to be in the billions (Adams

et al. 2004). Through direct and indirect means, winter

precipitation in the United States accounted for ap-

proximately 900 fatalities per year between 1975 and

2011 (Black and Mote 2015). Furthermore, mesoscale

precipitation bands account for ;22% of total annual

precipitation occurrences (Fairman et al. 2016) and were

found to occur in 85% of cold-season heavy precipitation

events in theNortheast (Novak et al. 2004, hereafterN04)

and 63% of central U.S. heavy snow events (Baxter and

Schumacher 2017, hereafter BS17). Snowbands are on

the order of hundreds of kilometers in length and tens of

kilometers in width, leading to extreme gradients in

impacts over a short distance along the minor band axis.

The limited extent of snowbands means even the mere

occurrence of bands is difficult to predict, not to men-

tion the timing, location, and intensity (e.g., Nicosia and

Grumm 1999; Evans and Jurewicz 2009; Novak and

Colle 2012).

Single bands are most commonly the product of an

ageostrophic, thermally direct, transverse frontal cir-

culation initiated by frontogenesis, which occurs when

the axis of dilatation is within 458 of the orientation of

isotherms (Petterssen 1956; Sawyer 1956; Nicosia and

Grumm 1999). This thermally direct frontal circula-

tion acts to offset frontogenetical increases in the mag-

nitude of the horizontal temperature gradient, thereby

maintaining thermal wind balance. Assuming saturatedCorresponding author: Jacob T. Radford, jtradfor@ncsu.edu
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conditions, the rising branch of the circulation may

release conditional instability (CI) and produce heavy

precipitation north of the surface cyclone (Schultz and

Schumacher 1999). Novak et al. (2009) concluded that

equivalent potential vorticity (EPV) is reduced in the

cyclone warm sector due to differential horizontal

temperature advection. Vertical motion is stronger and

smaller in scale when collocated with low EPV in the

warm sector (Emanuel 1985).

N04 and BS17 have developed robust snowband cli-

matologies. N04 developed a band climatology utilizing

a quasi-objective classification system for northeast

U.S. cold-season precipitation events. This system sep-

arates precipitation features into classes of nonbanded,

single-band, multiband, narrow cold frontal, transitory,

or undefined based on band intensity, length, width, and

duration criteria using base reflectivity. N04 found that

‘‘single’’ bands, defined as ‘‘a linear reflectivity feature

20–100km in width and greater than 250km in length. . .

[with] a minimum intensity of 30 dBZ along a majority

of its length for at least 2 h,’’ were the most common,

with 55% of cases falling into this category. They also

developed surface-cyclone-relative band composites

that were used to conclude that 81% of bands occurred

to the northwest of the corresponding cyclone center,

which were predominantly located immediately off the

U.S. East Coast. Mirroring N04, BS17 conducted a cli-

matology for the central United States, separating ca-

ses into banded (66) and nonbanded (38). These events

were identified manually using a similar single band

definition to that of N04, and used to create cyclone-

relative band composites. Contrasting N04, BS17 found

thatmost centralU.S. bandswere located to the northeast

of the surface cyclone and exhibited a wider variety of

orientation angles owing to more diverse 500-hPa flow

regimes. While the banding ingredients of moisture, lift,

and instability were found to be consistent, the locations

of these ingredients relative to the surface low varied

between northwest- and northeast-quadrant bands.

Few studies have assessed the predictability of

snowbands due to the recent advent of models with

adequate grid spacing to explicitly depict banding. In-

stead, forecasters have relied on forecasts of environ-

mental conditions commonly associated with bands to

determine at-risk locations (Novak et al. 2006; Evans

and Jurewicz 2009). Evans and Jurewicz (2009) con-

cluded that the presence of model-predicted banding

ingredients of frontogenetical forcing, moist sym-

metric instability (MSI), and saturation were found

in both major and minor snowfall events, but the

‘‘magnitude, depth, and persistence’’ of these ingre-

dients correlate to total snowfall. However, this cor-

relation decreases significantly with lead times greater

than 12 h. Evans and Jurewicz (2009) propose a forecast

strategy of using a high-resolution deterministic model

to identify ‘‘snowfall potential,’’ then applying an en-

semble to provide location and timing probabilities.

Novak et al. (2008) simulated a northeastern U.S.

banding case and found that while a 4-km MM5 model

configuration could represent realistic band develop-

ment, the intensity was significantly underestimated

and the band axis was displaced by approximately

50 km relative to observations. Novak and Colle (2012)

assessed snowband predictability using a 16-member

12-km ensemble system. This study was largely proof-of-

concept, verifying the performance of the multimodel

ensemble in just three banded cases. While noting the

limitations of the relatively coarse grid spacing and the

need for a larger sample size, the authors conclude that

predictability varies significantly from case to case and is

very sensitive to initial conditions. Furthermore, it was

determined that the multimodel ensemble may be more

useful in deciding if a band will occur rather than when

and where a band will occur.

Advances in computational efficiency have allowed

for the development of operational models with sig-

nificantly finer grid spacings, such as NCEP’s High-

Resolution Rapid Refresh (HRRR), developed by the

Earth System Research Laboratory (ESRL; Smith et al.

2008; Benjamin et al. 2016). The implementation of

operational convection-permitting models such as the

HRRR may aid forecasters in assessing snowband pre-

dictability and improving ‘‘single’’ snowband forecasts

(Evans and Jurewicz 2009; Novak et al. 2008; Novak

and Colle 2012). It is recognized that models such as the

HRRR have been widely used by operational fore-

casters for several years, but, to our knowledge, there

has not been a systematic verification study for nu-

merical forecasts of banded snowfall. First, we present

an objective band-detection algorithm, then compare

HRRR-forecast and observational snowband climatol-

ogies east of the Rockies, followed by verification based

upon matching of forecast and observed band objects.

This paper is divided into four additional sections: data

and methods, snowband climatologies, snowband veri-

fication, and conclusions and future work.

2. Data and methods

Observed snowbands were identified fromNEXRAD

base reflectivity mosaic (N0Q) products archived by the

Iowa StateEnvironmentalMesonet (IEM).Mosaics were

collected at hourly intervals for the 2015/16, 2016/17,

and 2017/18 winter seasons, defined as 1 November

through 31March. These three seasons were chosen due

to the limited availability of archived HRRR data prior
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to this time (Blaylock et al. 2017). The NEXRAD mo-

saics have a grid spacing of 0.5 km and an intensity in-

terval of 0.5 dBZ.

Forecast snowbands were identified from the opera-

tional version of the HRRR produced at the National

Centers for Environmental Prediction (NCEP) for the

same period. Specifically, precipitation features were

identified in the 1000m above ground level (AGL) re-

flectivity field. The HRRR has a grid spacing of 3 km, is

initialized hourly, and provides hourly forecasts through

15h. The HRRR was upgraded during the study period

and forecasts were extended to 18h, but hours 16–18 are

not evaluated. The upgrade also included changes to the

physical parameterizations, which could potentially re-

sult in variability in forecast performance before and

after the implementation. Storage and processing con-

straints limited archival to every third initialization.Areas

of poor radar coverage and all locations west of 1048W
were masked out of the forecast imagery to limit the

impact of precipitation differences in areas of inadequate

NEXRADcoverage. Thiswas accomplished by drawing a

230km radius (maximumNEXRAD range) out from the

location of each NEXRAD station location and then

masking any precipitation falling outside of these radii

in the HRRR field. This mask reduces the possibility of

erroneously identifying HRRR band frequency biases in

regions of poor NEXRAD coverage.

The N0Q images were referenced against Real-Time

Mesoscale Analysis (RTMA) 2-m temperature prod-

ucts to estimate precipitation type. Simple masks were

created based on a temperature threshold of 08C, with
any precipitation occurring within the cold region as-

sumed to be snow.We recognize that this assumption is

not always valid, as precipitation with subfreezing 2-m

temperatures may be in the form of freezing rain or ice

pellets, and it is possible for precipitation type to be in

the form of snow with temperatures slightly above

freezing. Nevertheless, this strategy serves as an ade-

quate first guess given the available observations. To

maintain consistency with our observational treatment,

forecast precipitation types were likewise estimated

from the HRRR forecast 2-m temperature field. The

RTMA and HRRR 2-m temperatures are comparable,

with an average observed snowband centroid 2-m tem-

perature of25.58C and an average forecasted snowband

centroid temperature between 24.88 and 25.58C, de-
pending on forecast lead (Table 1). Previous regional

climatological studies (e.g., BS17; Ganetis 2017) have

used Automated Surface Observing Station (ASOS)

and/or Cooperative Summary of the Day (COOP) data

to narrow down precipitation events to those with snow

as the predominant precipitation type. This can be an

effective solution when the domain is limited in scope

and precipitation types are assumed to be relatively

homogeneous, but this method is difficult to apply to

our broader domain encompassing multiple synoptic

systems and precipitation types.

Our snowband size criteria matches that used by

BS17, which required a 250-km length minimum and

an aspect ratio exceeding three. The 250-km length

requirement limits detected bands to the larger, ‘‘single’’

band category that is the focus of our predictability

study, while the minimum aspect ratio of 3:1 better

addresses the interpretation of a band as a precipita-

tion feature that is significantly longer than it is wide.

In addition, because our automated procedure uses

bounding rectangles that tend to overestimate a re-

gion’s width, a 3:1 aspect ratio gives more leeway to

capture larger band features that are more likely to

exhibit some degree of curvature. That said, bands

exhibiting significant curvature are likely not captured

by our definition, so bands in our dataset are quasi-

linear. The prevalence of curved banding is unclear

and the identification of such bands is a potential av-

enue for future work.

In previous works, the intensity criterion has gen-

erally been more varied than the size criterion. BS17,

for example, applied a 25-dBZ minimum, reduced

from N04’s 30-dBZ minimum. Ganetis et al. (2018)

implemented an adaptive threshold, where the mini-

mum reflectivity is calculated as the upper sextile of

all reflectivity values throughout the domain. This

definition was developed in light of the consideration

that humans do not identify bands according to a set

TABLE 1. Mean observed and forecast snowband characteristics for the winter seasons of 2015/16, 2016/17, and 2017/18.

Observed 3-h lead 6-h lead 9-h lead 12-h lead 15-h lead

No. 329 392 408 462 482 445

Length (km) 373 6 128 376 6 142 384 6 131 389 6 136 387 6 148 392 6 146

Width (km) 80 6 35 86 6 41 86 6 36 89 6 38 85 6 42 87 6 43

Axis ratio 5.2 6 2.1 4.8 6 1.8 4.9 6 1.8 4.9 6 2.0 5.1 6 2.1 5.2 6 2.2

Area (km2) 11 200 6 9200 15 200 6 14 000 15 300 6 11 700 15 900 6 12 700 15 400 6 14 300 16 300 6 14 900

Solidity 0.48 6 0.10 0.58 6 0.13 0.59 6 0.14 0.59 6 0.14 0.59 6 0.14 0.59 6 0.14

Centroid temperature (8C) 25.5 6 4.6 24.8 6 4.0 25.0 6 4.1 25.5 6 4.2 25.3 6 4.6 25.1 6 4.4

Intensity (dBZ) 24.3 6 3.8 20.4 6 4.9 18.9 6 5.0 18.4 6 5.2 18.1 6 5.4 18.4 6 5.3
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reflectivity threshold or radar-display color value, but

instead recognize bands as areas where reflectivity is

locally maximized.

Our thresholding technique is most like Ganetis

et al.’s (2018) adaptive threshold. We’ve applied a

nested thresholding procedure, in which we first iden-

tify contiguous precipitation regions and then identify

the embedded enhanced precipitation associated with

banding. To identify contiguous precipitation features,

the entire reflectivity field is thresholded at 0 dBZ,

producing several distinct precipitation objects. A re-

flectivity value above each object’s mean must be

chosen in order to delineate a band; we selected a value

of 1.25 standard deviations above each object’s mean

reflectivity based on favorable comparisons to manu-

ally identified bands and to tests using other standard

deviation threshold values. Multiple thresholds were

tested on several banded and nonbanded case studies

across the domain, and the 1.25 standard deviation

threshold was found to be an effective discriminant for

what we subjectively identified as bands. Although we

are confident that this method is an improvement on

rigid reflectivity thresholds, it does not address the fact

that the threshold choice is largely subjective.

Following digitization and bilinear spatial interpola-

tion to the HRRR grid, N0Q images are smoothed

using a 53 5 Gaussian filter, which helps to bridge small

reflectivity discontinuities that may act to break up

contiguous precipitation features. Band detection ap-

peared to be relatively insensitive to filter width, but

future detection work could benefit from a quantitative

analysis of band frequency by filter size. From the

original reflectivity image (Fig. 1a), precipitation objects

are identified using a 0-dBZ threshold (Fig. 1b). Each

object is compared against the 2-m temperature field

to determine which grid cells will be classified as snow.

Only cells with 2-m temperatures below 08C are in-

cluded in the calculation of a mean reflectivity. The

reflectivity value 1.25 standard deviations above the

mean reflectivity of each precipitation object is used as a

threshold to reveal embedded precipitation features

with a substantially higher reflectivity than their imme-

diate surroundings (Fig. 1c). Once these precipitation

features are identified, a rotated bounding rectangle is

FIG. 1. A step-by-step visual representation of the band identification process. Beginning with (a) unaltered

base reflectivity at 2300 UTC 9 Feb 2017, we threshold at 0 dBZ to identify (b) contiguous precipitation objects.

Next, we threshold precipitation objects at 1.25 standard deviations above the object’s mean to identify

(c) embedded intense precipitation objects. Finally, (d) we apply a bounding rectangle to compare the region’s

length and width to our band definition and evaluate the fraction of the object’s area falling below freezing

(above freezing area is masked in orange).
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applied to each, allowing for measurements of attributes

such as length and width. If over 50% of the precipita-

tion object is below freezing and its bounding rectangle

is 250km in length with an aspect ratio of at least 3:1, it is

classified as a snowband (Fig. 1d).

A major advantage of this thresholding technique is

that it minimizes the influence of differences between

observed base reflectivity and 1000-m simulated reflec-

tivity. These two fields should not be directly compared

without first acknowledging a key limitation: 1000-m

reflectivity measures reflectivity at a constant height,

while base reflectivity measures reflectivity at a con-

stant elevation angle. Thus, equivalent values in the

1000-m and base fields should not necessarily be inter-

preted as perfect forecast accuracy. However, if we as-

sume the distributions of the two fields to be similar,

threshold values based on the mean and standard dis-

tribution should be comparable. The distributions of

snow reflectivities above 0 dBZ are shown in Fig. 2. The

distributions of the two fields are similar, with mean

reflectivities of 10.1 dBZ and between 9.7 and 10.4 dBZ,

depending on forecast lead time, for base and 1000-m

forecast reflectivity, respectively.

3. Observed and forecast snowband climatologies

A total of 1003 snowband hours were identified from

the observed base reflectivity east of the Rockies over

the 2015/16, 2016/17, and 2017/18 winter seasons, us-

ing radar images at the top of every hour. When radar

images only occurring at the top of every third hour are

examined (to match HRRR initializations; e.g., 0000,

0300, 0600, 0900, 1200, 1500, 1800, and 2100 UTC), 329

band hours were observed. Between 392 (3-h lead)

and 482 (12-h lead) images with bands were identified

from the HRRR-forecast 1000-m reflectivity, varying

by lead time (Table 1). These values are 19% and 47%

overestimates of observed band occurrence, respectively.

Thus, the HRRR overestimates band frequency sub-

stantially, but the bias is reduced with decreasing forecast

lead time. This frequency overestimate is not necessarily

attributable toHRRRerror, as overshooting in regions of

sparse radar coverage may contribute, as will be investi-

gated later in this section.

The smoothed distribution of band hours exhibits two

local maxima (Fig. 3). One occurs over the coastal

northeastern United States in an elongated region from

New Jersey through eastern Maine. The second occurs

in the central United States, extending from eastern

Nebraska through Wisconsin and into Michigan. Both

regions exhibit several locations receiving over 8 h of

banding over the three seasons. These central and

Northeast maxima largely corroborate the regional

banding distributions presented in BS17 and N04. The

only notable discrepancy between our distribution and

these previous climatologies was a slight shift of the

greatest density of Northeast snowbands from a region

centered near Long Island, New York (shown in N04’s

Fig. 3), to eastern Massachusetts.

In a broad sense, the HRRR forecasts adequately

capture the observed band distribution, particularly in

the central United States (Fig. 4). A local maximum in

FIG. 2. Observed base and HRRR-simulated 1000-m reflectivity

distributions for snow for the 2015/16, 2016/17, and 2017/18 winter

seasons. Observed and HRRR forecast reflectivities at five differ-

ent leads are shaded according to the legend.

FIG. 3. The total number of hours banded snow was experienced

for locations east of 1048W over the 2015/16, 2016/17, and 2017/18

winter seasons.
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FIG. 4. (left) Observed distribution of banding, (center) forecast distributions of banding by lead, and (right)

differences between forecast and observed banding frequencies. The units are hours of banding for the 2015/16,

2016/17, and 2017/18 winter seasons.
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the central United States similar to that in the obser-

vations appears in the HRRR forecast climatology at

all lead times, with significant banding occurring be-

tween Nebraska and Michigan. The HRRR central

U.S. maximum is oriented more zonally compared to

the southwest to northeast orientation in the observed

distribution. The observed New England coastal max-

imum is significantly underestimated by the HRRR.

However, all lead times show a maximum in banding

offshore of Maine, forming a couplet of underforecast

banding along the coast and overforecast banding off-

shore. This could indicate that the HRRR is representing

the same maximum, but has a northeastward location

bias.Another reasonable interpretationwould be that the

observed coastal bandingmaximum extends offshore and

coincides with the HRRR maximum, but the observa-

tional radar network has limited offshore range.

The forecast band distributions show widespread

positive biases in band frequency, especially in the

northern portion of the analysis domain (Table 1, Fig. 4).

There are two regions in which the HRRR consistently

overestimates relative band frequency. First, the HRRR

exhibits a positive frequency bias in northernWisconsin,

Minnesota, and the Dakotas; however, these areas fea-

ture gaps in observational radar coverage. Figure 5amaps

distance from the nearest radar site, while Fig. 5b dem-

onstrates locations where radar beam height is less than

3km AGL in altitude. Thus, the areas of most egregious

contrast between model and observations may partially

be a consequence of insufficient radar coverage rather

than a model bias. Second is the HRRR’s overestimate

of banding along the Great Lakes coastlines, perhaps

associated with lake-effect snowbands. The observed

climatology exhibits a dearth of bands in lake-effect-

prone areas compared to the HRRR climatologies.

Our algorithm is not tailored for detection of lake-

effect bands, as they are generally shorter than single

bands and are not embedded within a larger stratiform

precipitation region. However, larger lake-effect bands

may still be identified. The forecast and observation

lake-effect discrepancy could perhaps be explained by

observational radars overshooting the tops of these

shallow events, leading to band breakups and fewer

observed features meeting the size minimum in the

observed radar fields.

Band properties such as length, width, area, and

intensity were calculated for detected bands in both

forecast and observation. Observed band lengths ranged

from the implemented minimum of 250km to a maxi-

mum of 1033 km, with a mean length of 373km. Ob-

served band widths ranged from a minimum of 16km

to a maximum of 246km, with a mean width of 80 km.

The bands at the upper end of these ranges would more

readily fall under the ‘‘meso-a’’ scale (Orlanski 1975;

Houze et al. 1976; N04), but are included in this analy-

sis as the distinction between the two is indefinite. Fur-

thermore, the formation processes of these larger bands

do not appear to be altogether different from more

traditional, smaller single bands. For example, the

largest band, which was 1033 km long and 246 km wide

(keeping in mind the bounding rectangle width over-

estimation), occurred on 4 January 2018 to the north-

west of an explosively intensifying offshore cyclone,

following the formation of an occluded front (Fig. 6).

FIG. 5. (a) Distance (km) of each grid point from the nearest NEXRAD location and (b) a mask of locations with a

beam height of less than 3 km.
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Warm air wrapping around the cyclone brings lower

static stability and elevated frontogenesis, leading to

intense precipitation (N04; Schultz and Vaughan 2011).

Model forecast bands were slightly longer and wider

than observed, with mean lengths ranging from an av-

erage of 376km at the 3-h lead to 392 km at the 15-h lead

and mean widths ranging from 86km at the 3- and 6-h

leads to 89km at the 9-h lead (Fig. 7). Forecast band

lengths ranged from the lower bound of 250 to 1408km,

while forecast band widths ranged from a minimum of

15 km to a maximum of 376 km. Band length and width

distributions at each lead time and in the observations

are shown in Figs. 7a and 7b, respectively. Aspect ratios

averaged 5.2 for observed bands and between 4.8 at the

3-h lead and 5.2 at the 15-h lead for HRRR-forecast

bands, indicating slightly more oblong objects in the

observations.

There was a positive bias in forecast band area com-

pared to the observations (Fig. 7c). While the mean

observed area was 11 200 km2, forecast band areas were

between 15 200 and 16 300 km2. Median forecast band

areas ranged from 11 000 to 11 800 km2, still a large

positive bias when compared to the observed median of

8200km2. Percentage errors in the forecast mean band

areas of 35%–45% far exceed the expected error from

compounding length and width differences. The mean

observed band solidity, or contour area divided by convex

hull1 area, was 0.48, compared with average solidities

in the HRRR of between 0.58 and 0.59. In other words,

observed snowbands were more complex, with more

gaps and variation in contour coverage, while forecast

objects were generally smooth. Thus, it appears that the

HRRR demonstrates a substantial positive area bias,

perhaps exacerbated by higher native resolution in the

observational field compared to theHRRRgrid spacing.

BS17 calculated a mean snowband length of 428km,

similar to our value of 373km, and ameanwidth of 45km,

much narrower than our mean width of 80km. Market

and Becker’s (2009) finding of a 61km mean width falls

roughly halfway in-between. However, BS17’s narrower

width is likely a result of manual versus automated band

detection methods; while the human eye can effectively

estimate the minor axis of complex features, bounding

rectangles tend to overestimate feature width, especially

in the event of band curvature, as shown in Fig. 8. On the

other hand, manual methods must make a judgment call

on where to measure the width of a precipitation feature.

Our finding of a mean aspect ratio of 5.2 is in line with

Fairman et al. (2016) and Market and Becker (2009),

which found aspect ratios of 4.9 (mean) and 5.0 (median;

mean not reported), respectively. BS17 found a much

higher mean aspect ratio of 10.8, consistent with their

narrower average bandwidth.

We recognize that there are additional complications

in comparing a diagnostic field such as model-simulated

reflectivity to observations. In particular, differences in

microphysical parameterizations and their use in the

calculation of radar reflectivity (e.g., Koch et al. 2005)

can have a large influence on simulated reflectivities.

Stratman et al. (2009) found that simulated reflectivity

FIG. 6. (a) Observed reflectivity at 1800 UTC 4 Jan 2018 demonstrating a long snowband along the Northeast U.S. coastline. The

identified snowband (contoured in orange) occurs on the northwest side of an occluded front associated with an intense offshore low, as

seen in (b) the surface analysis, produced by the Weather Prediction Center (WPC; https://www.wpc.ncep.noaa.gov/html/sfc-zoom.php?

h518&y52018&m501&d504).

1 The convex hull of a contour is the smallest convex set con-

taining all contour points.
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as calculated by the HRRR’s Thompson microphysics

scheme had a notable lowbias at a 40-dBZ thresholdwhen

compared to WSR-88D radar data. While acknowledging

these challenges, we compared mean intensities (defined

as the mean reflectivity of all grid points composing the

band) of forecasted and observed bands as a first attempt

at evaluating forecasted band intensities. Forecast bands

have mean intensities between 18.1 and 20.4dBZ, well

below the mean observed intensity of 24.3dBZ. The full

distribution of band reflectivities (Fig. 7d) is shifted to-

ward lower values in the HRRR, seemingly implying that

the HRRR is substantially underestimating banded pre-

cipitation intensity. The full distributions of below freez-

ing forecast and observed reflectivities were similar in

Fig. 2, suggesting that reflectivity differences are not solely

due to differences between base and 1000-m reflectivities.

A future research task could be to compare forecasted-

and observed-band snow water equivalent to see if the

intensity discrepancy is due to the assumptions used in

simulated reflectivity calculations, or if it represents a

negative intensity bias in the HRRR.

We next tested for regional variation in band prop-

erties. Bands were broken up into those occurring in

the Northeast region (latitudes north of 36.58N and

longitudes east of 858W), and those occurring outside

this region, which mostly comprises central U.S. bands.

This resulted in 281 Northeast bands and 722 ‘‘other’’

bands. Size differences were minor, but, as one might

expect given the Northeast’s nearby source of moisture,

lower static stability, and greater ascent, the largest

difference was found for average band intensity. While

the mean intensity of the ‘‘other’’ band category was

24.0 dBZ, the mean intensity of the Northeast category

FIG. 7. Distributions of (a) length, (b) width, (c) area, and (d) mean intensity (computed as the mean re-

flectivity of all grid points composing the band). Observed and forecasted distributions are shaded according to

the legend.

FIG. 8. Estimates of bandwidth using the human eye (black) and

automated bounding rectangles (red). Bounding rectangles can

significantly overestimate the width of objects with curvature.
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FIG. 9. Polar histograms of (a) observed and (b)–(f) HRRR-simulated band orientation angles.
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was nearly 2 dBZ higher at 25.9 dBZ, traditionally a

statistically significant difference (t 5 7.26, p , 0.0001).

Given the consistent tracks of low pressure systems

through the central United States and Northeast and the

propensity for bands to form in regions of strong front-

ogenesis, it is reasonable to surmise that a pattern in

band orientation would emerge. A polar histogram of

observed band orientation angles normalized by total

number of bands is shown in Fig. 9a. Most bands have a

nearly straight east–west orientation with only minor

tilts in the north–south direction. The most prominent

orientation is tilted slightly from northwest to southeast.

However, there is a significant portion of observed

bands exhibiting a southwest to northeast orientation

angle. The same orientation angle plots are shown for

all five forecast lead times in Figs. 9b–f. The HRRR

reproduces observed band orientation angles skill-

fully, with most forecast bands also exhibiting a nearly

east–west orientation at all five lead times. Splitting

these up by region, our results match BS17 and N04,

with the Northeast category demonstrating southwest–

northeast bands (Fig. 10a) and the ‘‘other’’ category

demonstrating bands distributed about an east–west

axis. BS17 posited that central U.S. storms moving

southeast along the southern edge of the Alberta storm

track exhibit the greatest confluence and midlevel

frontogenesis downstream of the 700-hPa trough in a

northwest–southeast orientation. This dilutes the oth-

erwise dominant northeast–southwest oriented bands

in southwesterly flow (BS17; Thomas andMartin 2007).

4. Snowband verification

While comparing HRRR-forecast and observed cli-

matologies provides useful predictability information

in a general spatiotemporal sense, it is more important

that HRRR forecasts are accurate on a case-by-case

basis. Do the individual bands predicted by the HRRR

correspond to observed bands? The simplest approach

to answering this question is to apply dichotomous

contingency tables based only upon the presence of

bands in order to calculate traditional verification met-

rics, such as probability of detection, false alarm ratio,

and critical success index.

In our climatological comparisons, there were no

spatial displacement restrictions for matching forecast

and observed band objects. This means that bands could

be matched from different locations in the domain, so

long as they were detected at the same time. This raises

concerns that results are influenced by false matches. To

address these concerns, median matched band centroid

displacements were calculated. The median displace-

ment ranged from 164km at the 3-h lead to 258 km at the

12-h lead. Furthermore, these are simple mass-weighted

centroid displacements that are influenced by object

shape and orientation. Thus, relatively small differences

in spatial characteristics can lead to larger displacements.

Object-oriented verification, to be presented shortly,

further addresses spatial characteristics of matched ob-

jects, including object displacement.

According to probabilities of detection (POD), false

alarm ratios (FAR), and critical success indices (CSI),

the results using this dichotomous verification method

depict limited band predictability. The HRRR’s best

POD performance is ;43% at the 12-h lead time. The

worst POD performance is 37% at the 6-h lead time. On

an encouraging note, 73% of observed bands were

forecast in at least one of theHRRR forecast lead times.

The FAR ranged from;66% at the 3-h lead to 71.5% at

the 9-h lead. It is important to note that the dramatic

FIG. 10. Polar histograms of band orientation angles in (a) the Northeast region and (b) everywhere else for the

2015/16, 2016/17, and 2017/18 winter seasons.
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overforecast in band frequency may at least in part be

due to observational radar network coverage (Fig. 5).

Probability of detection, success ratio (SR; the com-

plement of FAR), and critical success index can all be

visualized together using Roebber’s (2009) perfor-

mance diagram (Fig. 11). Points falling farther toward

the upper-right corner of the diagram indicate better

model performance. CSI scores were tightly packed,

ranging from 0.20 at the 3-h lead to 0.22 at the 9-h lead.

In other words, forecast bands rarely corresponded

to observed bands and there is little variation with

lead time.

Grouping events into hits and misses also allows us to

evaluate the differing properties of observed bands that

were correctly forecasted versus those that were not.

The average hit had lengths varying by lead time of

between 387 and 402km, widths between 83 and 86km,

and areas of between 12 000 and 13 100 km2. These

values are larger than for missed bands, which had av-

erage lengths between 356 and 366km, average widths

between 76 and 78km, and average areas between 9900

and 10 600km2. A traditional statistical significance

threshold is only reached for length and width at the 3-h

lead (length: t 5 3.0471 p , 0.005; width: t 5 2.3971

p, 0.05), though this does not necessarily mean there is

no difference in reported size differences at other lead

times, which exhibited greater variability (Amrhein

et al. 2019). Differences in band intensities were gen-

erally small, but consistent across leads, with misses

between 0.3 and 1.2 dBZ more intense than hits. This

only reaches traditional statistical significance at the

12-h lead (t 5 2.7285 p , 0.01), again with the caveat

that subscribing to statistical significance thresholds is

advised against by the statistics community (Amrhein

et al. 2019; Hurlbert et al. 2019; Wasserstein and

Lazar 2016).

Are bands more predictable in the Northeast or cen-

tral United States? To address this question, we sub-

setted bands into 81 Northeast bands and 224 other

bands based on a cutoff of 36.58N and 858W. The fore-

cast skill for Northeast bands is lower than that of the

‘‘other’’ bands, with the Northeast band CSIs between

0.06 and 0.14, with the ‘‘other’’ band category featuring

CSIs of between 0.19 and 0.22 (Fig. 12). The Northeast

region’s sample size is smaller than that of the ‘‘other’’

set, and thus a degree of increased variability is ex-

pected, but the causes of lower band predictability in the

Northeast are worthy of additional study. Some poten-

tial hypotheses to investigate could be differing magni-

tudes of moist, midlevel frontogenesis and reduced EPV

in the Northeast and central U.S. regions, the influence

of terrain, and the HRRR’s representations of North-

east coastal fronts and upstream convection. The latter is

supported by Novak et al.’s (2009, 2010) findings of dia-

batic PV anomalies east of the primary NE bands, likely

associated with convection driven by the warm Gulf

Stream. It is well established that convection plays a

factor in limiting predictability (Zhang et al. 2003), par-

ticularly for downstream precipitation (Mahoney and

Lackmann 2007), so it is reasonable extrapolate these

results to snowband predictability.

The dichotomous contingency table is rigid in its

definition of what constitutes a hit. For example, a band

may be forecast just an hour before or after a band was

observed, but in this situation the model is penalized

with both a false alarm and a miss since the forecast

and observed band do not occur at precisely the same

time. To account for this, we apply fuzzy verification

FIG. 11. Roebber’s (2009) performance diagram for the 2015/16,

2016/17, and 2017/18 winter seasons at five different forecast leads.

Success ratio (1 2 FAR) is on the x axis, POD is on the y axis,

and contours indicate CSI. Different forecast leads are shaded

according to the legend.

FIG. 12. As in Fig. 11, but breaking the set into two regions.

Northeast and ‘‘other’’ category scores at five different forecast

leads are shaded according to the legend.
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(Ebert 2008), for which model skill is rewarded in these

‘‘near-miss’’ cases. Fuzzy verification was applied in the

time domain. This entails creating small time windows,

and, if a band is detected at any time in this window, a

positive identification is recorded. Different window

lengths may be chosen depending on the desired degree

of leniency afforded to the model. In our case, 1-, 2-, and

3-h windows have been applied. Since these windows

are symmetric, the maximum time difference between

a forecast and observed band would be 2, 4, and 6h,

respectively.

With fuzzy time verification, POD increased from an

across-lead mean of 39.9%–55.1% with a 1-h window,

61.8%with a 2-h window, and 66.6%with a 3-h window.

Similarly, the FAR decreased from the initial 69.2%–

57.5%with a 1-h window, 51.6%with a 2-h window, and

48.3% with a 3-h window. Consequently, CSI increased

from 0.21 with no window, to 0.32 with a 1-h window,

0.37 with a 2-h window, and 0.41 with a 3-h window

(Fig. 13). Our climatology combined with the signifi-

cant increase in performancewith the application of fuzzy

time verification suggests that the HRRR may often

capture the environmental conditions associated with

heightened band risk and thus produce bands in tem-

poral proximity to observed bands, but should not be

expected to predict the precise timing of bands.

We again split bands into ‘‘Northeast’’ and ‘‘other’’

to determine if the difference in regional predictability

persisted when fuzzy time verification was employed

(Fig. 14). The lower predictability of Northeast bands

extended to the 1-, 2-, and 3-h time windows. The

Northeast region experienced very similar performance

improvement to the ‘‘other’’ category, with CSI rising

approximately 0.15 between the no-window scenario

and the 3-h window. This supports the idea that the

errors in forecast band timing for the Northeast are no

smaller or larger than in other regions.

Fuzzy verification does not provide information on

whether matched bands exhibit similar properties. The

Developmental Testbed Center’s (DTC) Method for

Object-Based Diagnostic Evaluation (MODE) tool lets

researchers match precipitation features based on the

similarity between forecast and observed object prop-

erties (Davis et al. 2009). The choice of these parameters

and their relative importance is somewhat arbitrary, but

should be tailored to the specific phenomenon in ques-

tion. The parameters we deemed most important to

band forecast skill were centroid distance, area ratio,

aspect ratio difference, and orientation angle difference,

which we weighted equally. A tunable interest function

was developed to produce an overall interest score

(a dimensionless measure of forecast and observed ob-

ject similarities) based on the four parameters:2

I
of
5C

D

150:02D
of

600:0
1

2:02AS
of

8:0
1C

O

9082O
of

3608

1
1:02A

of

4:0
, (1)

whereCD5 centroid distance confidence;Dof5 centroid

distance; ASof5 aspect ratio difference; CO5 orientation

angle difference confidence; Oof 5 orientation angle dif-

ference; Aof 5 area ratio difference.

FIG. 13. As in Fig. 11, but applying fuzzy time windows. No, 1-, 2-,

and 3-h time windows are symbolized according to the legend.

FIG. 14. As in Fig. 11, but broken down into regions with fuzzy

time windows applied. No, 1-, 2-, and 3-h time windows are shown

with different symbols for each lead time. The Northeast and

‘‘other’’ categories at different lead times are symbolized and color

coded according to the legend.

2We refer the reader to the Model Evaluation Tools user doc-

umentation (Gotway et al. 2018) for more details on how MODE

calculates interest scores.
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This interest function was designed specifically so that

an interest score of 0.70 or greater correlates to a rea-

sonably well-forecast banding event, similar to methods

employed byDavis et al. (2009). Some examples of well-

and comparatively poorly forecasted events are shown

in Fig. 15. If errors were distributed equally between the

four interest parameters, the 0.70 cutoff would equate

to a centroid distance of 45 km, an area ratio of 0.70, an

aspect ratio difference of 0.60, and an orientation angle

difference of 278. The mean interest for all 357 cases

across all lead times was 0.54, while the median interest

was 0.66. The distribution (Fig. 16) is highly skewed to-

ward lower values due to the prevalence of cases in which

one or more of the leads forecast no intense precipitation

objects, leading to interests of 0.0. Breaking down the

distribution by lead (Fig. 17), there is no trend with de-

creasing lead times, consistent with what was found in the

traditional and fuzzy verification sections.

Using the 0.70 ‘‘well-forecast’’ threshold, the mean

interest across leads indicate that 107 out of the 357

cases (30%) were well forecast. Out of the 357 cases, 247

(69%) had at least one forecast lead time with an in-

terest greater than 0.70. This is similar to what was found

in the traditional verification, in which 66% of cases

were forecast in at least one forecast lead. Though less

than ideal, this could help to signal forecasters that

conditions are favorable for band development. Since

there is no particular lead time that exhibits improved

band forecast performance, it would be difficult for

forecasters to determine which forecast lead will be

correct; however, use of probabilistic visualizations

such as a time-lagged ensemble could indicate areas

where there is enhanced risk of banding. Examples of

how these visualizations could assist in band forecast

formation, timing, and duration are demonstrated in

Figs. 3 and 4 of Novak and Colle (2012).

Well- and poorly forecasted events were separately

composited through an affine coordinate translation to

match centroids (Fig. 18). Figures 18a and 18b show band

frequencies, with well-forecasted events demonstrating

FIG. 15. (a) A comparatively poorly forecasted band case (0900 UTC 5 Jan 2017; interest 5 0.0) and a com-

paratively well-forecasted band case (0900 UTC 9 Feb 2018; interest5 0.914) according to MODE interest scores.

Both cases are shown at a 9-h forecast lead.
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a slightlymoreNW–SEorientationwhen compared to the

west–east orientation of the poorly forecasted events.

Figures 18c and 18d show the mean intensity of well- and

poorly forecasted bands relative to the band centroid.

There is no strong pattern to discern, but well-forecasted

events are slightly less intense than poorly forecasted

counterparts. Gathering information on the synoptic en-

vironments of these band cases will be of fundamental

importance to further predictability analysis.

Finally, we investigate regional predictability based

on MODE interest. Cases were split into 107 well-

forecast cases and 250 poorly forecast cases based upon

the 0.70 interest threshold. These well- and poorly

forecast cases were then divided into ‘‘Northeast’’ and

‘‘other’’ subcategories. Unlike the results of traditional

and fuzzy verification, there is no regional predict-

ability dependence, with nearly identical proportions

of well-forecast cases in the Northeast and elsewhere

(27% vs 30%, respectively). The mean interest score in

the Northeast was 0.54 compared to a mean of 0.55

elsewhere. Only cases with an observed snowband

were evaluated here, thus the lack of regional interest

variance seems to indicate that the poor Northeast

predictability is associated with false alarms rather

than missed forecasts.

5. Conclusions and future work

We have developed a robust, objective snowband

definition that was then implemented into an automated

detection algorithm to detect snowbands within reflec-

tivity fields. This algorithm was first applied to observed

base reflectivity and HRRR-forecast 1000-m reflectivity

and supplemented with RTMA 2-m temperature fields

to build region-independent forecast and observed

snowband climatologies for the 2015/16, 2016/17, and

2017/18 winter seasons. Forecast and observed bands

were then compared on a case-by-case basis to assess

the predictability of bands by the HRRR. This was done

using dichotomous contingency tables, fuzzy verifica-

tion to give the HRRR a greater margin of error in time,

and object-oriented verification using MODE to match

precipitation features based on intrinsic properties of the

objects such as location, orientation, area, and aspect ratio.

A total of 329 bands were detected in the observa-

tions, compared with between 392 and 482 in the model,

constituting a large, positive bias. However, the larg-

est overestimates in band frequency occur in regions of

relatively sparse radar coverage. Reduced observational

radar coverage and radar overshooting of shallow sys-

tems could preclude the detection of observed bands

and lead to an overestimate by the HRRR. Band areas

were forecast to be between 35% and 45% greater

than observed, likely a combination of slightly longer

and wider bands, along with higher average object so-

lidities in the forecasts. Average band intensities were

about 6 dBZ higher for observed bands. More investi-

gation, such as comparisons between forecast and ob-

served snow-water equivalent, will be necessary to clarify

whether this is a true intensity bias, a consequence of

assumptions used to calculate simulated reflectivity, or a

difference between 1000-m and base reflectivities.

Considering results across all three verification

methods, we reach the conclusion that the HRRR gen-

erally does not forecast snowband properties and timing

with great accuracy. For every band that is forecast at

the same time a band is observed (hits), there are nearly

two bands forecast that were not observed (false alarms).

However, allowing for small timing discrepancies of up to

FIG. 16. The distribution of (across-lead) mean MODE interests

between forecast precipitation objects and observed bands using

equal weightings of interest parameters. The threshold for a well-

forecast case is indicated by the bold red line.

FIG. 17. Distributions of mean MODE interests at five different

forecast leads (varying shades of blue).
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3 h using a fuzzy verification approach significantly im-

proved POD, FAR, and CSI. Object-oriented verifica-

tion produced mixed results for HRRR performance.

Only 30% of observed banding cases received an in-

terest exceeding 0.70, a value corresponding to a rea-

sonably well-forecast event. Though the fraction of

well-forecast events across all lead times is low, 69% of

cases received an interest of 0.70 for at least one lead

time. There was no improvement with shorter fore-

cast leads, a counterintuitive conclusion. There is per-

haps some trade-off between model spinup impacting

shorter leads and greater uncertainty impacting longer

leads. Ideally, decreasing lead times would show

greater consistency in band forecasts, but the presence

of matching precipitation objects in at least one forecast

lead could be beneficial to forecasters trying to assess if

there is potential for a banding event. For example, the

presence of a band at one lead time could be visualized

on a time-lagged ensemble heat map, indicating a small

probability of band formation. TheHRRRmay be useful

to forecasters in determining when environmental con-

ditions are favorable for banding, if not precisely when a

band will develop, a conclusion also reached by Evans

and Jurewicz (2009) and Novak and Colle (2012) for

models employing convective parameterizations.

Band lengths, widths, areas, and solidities are rela-

tively consistent between the Northeast and elsewhere,

but bands in the Northeast are more intense, perhaps

associated with the greater moisture supply, lower

static stability, and stronger ascent near snowbands in

the Northeast. While band orientations in the North-

east are primarily oriented from southwest to northeast,

other bands are overwhelmingly oriented more zonally,

results consistent with results of N04 and BS17. North-

east bands are less predictable than their central U.S.

counterparts. CSIs for Northeast bands ranged from

about 0.10 with no timing leniency to 0.25 with a 3-h

window, while CSIs for other bands ranged from about

0.20 with no timing lenience to 0.40 with a 3-h window.

Object-oriented verification, which only analyzed cases

in which a band was observed (and therefore precludes

false alarms) demonstrated nearly identical percentages

of well-forecast cases between the two regions.

Armed with objective documentation of the difficul-

ties in numerical prediction of banded snow events,

additional research is needed to determine the factors

that limit snowband predictability. More investigation

into the synoptic environments associated with banding

and topographical influences would be useful in deter-

mining why a large percentage of bands go undetected

FIG. 18. Band-centroid relative composites demonstrating (a) poorly forecasted and (b) well-forecasted band

frequency, and (c) poorly forecasted and (d) well-forecasted average band intensities. AMODE interest threshold

of 0.70 was used as the cut-off for well- vs poorly forecasted band events.
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even with a high false-alarm rate. A rich avenue for

future work is to use the well- and poorly forecasted

band dataset to develop more robust synoptic compos-

ites, empirical orthogonal functions, or self-organizing

maps to identify robust signals that may distinguish well-

and poorly forecasted banding events.

High-resolution NWP models such as the HRRR

are just one tool in a forecaster’s toolbox for forecast-

ing snowbands. The HRRR may provide some value

in identifying snowfall cases that have potential for

band development, but it is inadequate for prediction

of the precise band timing and location. HRRR guidance

for high-impact, heavy snow events should be employed

with these limitations in mind. Similar to other snowband

predictability studies (e.g., Novak et al. 2008; Evans and

Jurewicz 2009; Novak and Colle 2012), we recommend

using the HRRR to identify regions of elevated risk

for snowbands, rather than taking the timing, placement,

and intensity at face value. Instead, application of high-

resolution ensembles like the High-Resolution Ensemble

Forecast (HREF) or the HRRR ensemble (HRRRE)

could provide invaluable probabilistic information on

the most likely location and time of band development,

rather than simply signal the presence of environmental

band ingredients.
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